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Impurity-induced critical behaviour in 
antiferromagnetic Heisenberg chains 
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Department of Physics and MARTECH, Florida State University. Tallahassee. Florida 
32306, USA 

Received 11 March 1991 

Abstract. We consider an integrable SU(Z)-invariant model consisting of the Heisenberg 
chain of arbitrary spin S (Takhtajan-Babujian model) interacting with an impurity of spin 
S'. Theimpurityisassumedto belocatedonthemthlinkofthechainandinteractsonlywith 
both neighbouring sites. The starting point is a set of commuting transfer matrices. whose 
local weights satisfy triangular YaneBaxter relations. The diagonalization of the transfer 
matrics leads to the Bethe amslltz equations for the model. The thermodynamics of the 
system is studied. Three situations have to be distinguished (i) If S' = S the impurity just 
corresponds to one more site in the chain. (ii) I f s '  > S the impurity spin is only partially 
compensated at T = 0, leaving an effective spin of (S' - S). (iii) S' < S the entropy has an 
essential singularity at T = H = 0, giving rise to critical behaviour as H and T tend to zero. 
These properties are in close analogy to those of the n-channel Kondo problem. 

1. Introduction 

Since Bethe's diagonalization [I] of the isotropic spin4 Heisenberg chain (now known 
as Bethe's unsutz), many important properties for this model have been derived in 
numerous contributions [2-lo]. Several integrable generalizations of the isotropic S = 
d Heisenberg chain were found, for instance, (a) the anisotropic chain [11-131, (b) the 
SU(2)-invariant chain of arbitrary spin S [14-191, (c) systems of arbitrary number of 
components and SU(N)-symmetry [20-231, and (d) the Heisenberg chains of spin 1 and 
1 with an impurity 124,251 of arbitrary spin S'. Some of these systems are reviewed in 

In this paper we extend previous results [24,25] for impurities in a Heisenberg chain 
to the situation of an SU(2)-invariant chain of arbitrary spin S [E, 181 with an impurity 
of spin S'. We consider a chain consisting of N sites of spin S with periodic boundary 
conditions, i.e. a ring of length N so that S,,, = S,. The impurity is assumed to be 
located on the mth link, i.e. between the mth and (m + 1)th sites, and interacts only 
with both neighbouring sites. The interaction must be of a special type [24,25] to 
preserve the integrability of the model. The starting point is a set of commuting transfer 
matrices, whose localvertex weights&(A) satisfy the triangular YaneBaxterrelations 
[27,28]. This triangular relation guarantees the integrability of the system by construc- 
tion. In section 2 we explicitly define the transfer matrices, show their commutative 
properties and diagonalize them for the special case of an impurity spin S' = &, but 
arbitrary spin S in the chain. Here we follow a similar procedure as in [14,15, 18,251. 
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The diagonalization ofthe transfer matrices leads to the so-called Bethe umutz equations 
for the system. The Bethe umucz equations for a general impurity spin S‘ are given at 
the end of section 2. 

The thermodynamicsof the system isstudied in section 3. Here the excited states are 
classified in analogy to [6,18] and the thermodynamic Bethe umutz equations are 
derived. The thermodynamic propertiesof the impurity, in particular the small-fieldand 
low-temperature behaviour of the susceptibility and the specific heat, are presented in 
section 4 as a function of the impurity spin S’ and the spin of the lattice S. Conclusions 
follow as section 5. 

Our main results are the following. For the Heisenberg chain with ferromagnetic 
coupling the impurity, independently of its spin, is locked into the critical behaviour of 
thelattice,i.e.atlowtemperaturesthespecificheatisproportional to T”?(ferromagnetic 
magnons) and the susceptibility diverges as T-? with logarithmic corrections [8,9,19]. 
Three situations have to be distinguished for a chain with antiferromagnetic coupling: 
(i) If S’ = S the impurity just corresponds toone more site in the chain and consequently 
its properties are identical to those of the ‘bulk’. (ii) If S’ > S the spins neighbouring the 
impurityarenotabletocompensate theimpurityspins’intoasinglet at lowtemperatures 
[24,25]. Even a small magnetic field completely orients the remaining effective spin 
(S‘ - S) at zero temperature (the T = 0susceptibiIitydivergesasH-r 0) anda Schottky 
anomaly develops at finite temperatures. (iii) The most interesting case isS’ < S. Again 
a perfect compensation of the impurity spin by the neighbouring lattice sitescannot take 
place and the remaining spin degrees of freedom induce unusual physical properties. 
The T = 0 entropy has an essential singularity at H = 0, namely it jumps from 
In{sin{n(2S’ + 1)/(2S + 2)]/sin[n/(zS + 2)]} at H = 0 to zero for H # 0, giving rise to 
critical behaviour in the impurity susceptibility and specific heat, 

C(T,  H = 0) cc p/(2s+2) (1.1) M(T= 0, H) oc HIIS T d T ,  H = 0) cc 

sothatM(T= O,H) /H ,x (T ,H= 0)andC(T,H=O)/Talldivergewithapowerlawas 
H and T tend to zero. As expected the exponents depend only on the spin of the 
lattice (and not on the impurity spin, except for the condition S‘ < S), since the critical 
behaviour is the consequence of the collective excitations of the lattice. For the particular 
case S = 1 (and hence S‘ = b )  the exponents in (1.1) are equal to 1, giving rise to 
logarithmic divergences [25] in x and C/Tas H and Ttend to zero. 

The above properties follow in almost complete analogy to those of the generalized 
n-channel Kondo problem [2%32]. 

2. Transfer matrix and the Bethe unsatz equations 

We first have to define the vertex weight operators R(h),  represented by matrices acting 
on the tensor product of two spin spaces VI €3 V I ,  R!;$(A). Here j ,  and j 2  are the 
incoming states, while i, and i2 denote the outgoing states and h is a parameter. Inte- 
grability requires that the vertices satisfy the triangular Yang-Baxter relation 

R12(h)R13(h + p)R?’(p) = R”(p)R”(h + p)R’2(h)  (2.1) 

i.e. acting on the three-spin space VI €3 V 2  €3 V ,  the two processes defined by equation 
(2. I) yield identical results. These processes are schematically shown in figure 1. 
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Figure 1. Schematic representation of the tn- 
angular relation. equation (2.1). On the right- 
hand side f i s t  particles 1 and 2 scatter, then I and 
3 and finally 2 and 3. On the left-hand side first 2 
and 3scatter. then 1 and 3 and finally 1 and 2. The 
final result is the same. 

Figure 2. Schematic diagram of the monodromy 
matrix 

If the spins involved are all 4, i.e. all the indices run over two states only, the non- 
trivial solution of equation (2.1) with SU(2) symmetry yields the well known result 

,,R‘Z(2.) = 6(1 - W)Il BIZ + $01 B uz (2.2) 

where I is the identity matrix and U is the vector of Pauli matrices. A transfer matrix 
constructed with the vertex weights (2.2) gives rise to the standard S = t Heisenberg 
chain. 

If the subspaces V ,  and V ,  correspond to a spin 4 and the space Vz to an arbitrary 
spin S, then the solution of equation (2.1) leads to (using (2.2) for R”(I + p ) )  

, R 1 * ( I ) = i ( l - 2 1 ) l , B I ~  + u I B S Z .  (2.3) 

Equation (2.3) generalizes the vertex weight (2.2) to the case where the index ‘1’ runs 
over two states, while the index ‘2’ runs over (2s + 1) states. 

The SU(2)-invariant vertex weight for arbitrary spin S, i.e. with both indices taking 
(2s + 1) values, is obtained from equation (2.1) if the subspaces VI and V ,  correspond 
to a spin S and V z  to a spin 4. The vertex weight has the following form 

where Pi is a projector acting onto the space of the tensor product of the two spins 
involved, so that it selects the states with total spin j .  In other words, if / I )  is a state with 
totalspin I ,  then Pil l )  = C ~ ~ , ~ ~ L ) ,  and 

2s 
x - xj 

I=LlXI - x j  
P’(x) = n ~ 

I#’ 

x, = # ( I  + 1) - S(S + 1). Here x = SI . S2 ,  so that P(S, . Sz) is a polynomial of order 2S 
in (SI . Sz). ,R(A) also satisfies the Yang-Baxter relation, equation (2.1), if all the spin 
spaces involved are of dimension (2s + 1). 

The vertex weights for the situation where V ,  has dimension (2s’ + 1) and Vz 
has dimension (2s + 1) can be constructed with a similar procedure. They generalize 
equation (2.3) to arbitrary spins. The result for S’ = 1 and arbitrary S can be found in 
[E]. For the sake of clarity we consider in this section the case of a chain (with SU(2) 
invariance) of spins S and an impurity of spin S’ = $. 
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Figure 3. Diagrammatic represenlation of equalion (2. IO). 

Next we introduce the monodromy matrix &(A) 
fs(A)=,R"(A) sRm(l.). . . ,Ro"(A) ss,Rn"p(A) sRomtl(A). . . sRoN(A) (2 .6)  

where the matrix product is carried out in the auxiliary space V ,  of dimension (2s + 1). 
Note that a vertex weight for the impurity (ofspin S' = 1) has been inserted between the 
sites m and (m + 1). A schematic representation of the monodromy matrix is given in 
figure 2. The Vo space is denoted by the horizontal line, all others by vertical lines. 
Taking the trace over the in- and outgoing Vo lines (Le. by forming a ring) we obtain the 
transfer matrix Ts(A), 

T&) = TrdfdA)). (2.7) 

As a consequence of the triangular Yang-Baxter relation satisfied by all the vertex 
weights, the transfer matrices for different values of the parameter A commute, 

[Ts(A), T&)l = 0. (2.8) 
Hence, there exists a basis of states that diagonalizes T,(A) for all A simultaneously. The 
Hamiltonian, i.e. the energy associated with the transfer matrix, is then constructed 
according to 

(2.9) 

In the absence of an impurity this procedure leads to the Babujian-Takhtajan SU(2)- 
invariant Heisenberg chain of spin S.  A special case of the Babujian-Takhtajan model 
is the standard Heisenberg chain of spin 1. For S = 4 and an arbitrary impurity spin S', 
the above procedure has been employed by Andrei and Johannesson [24] and for S = 1 
andarbitraryS'hyLeeandSchlottmann[Z]. Criticalbehaviourinducedby theimpurity, 
however,onlyarisesforS> l a n d s '  CS. Toshowthisisthemain purposeofthepaper. 
For S = 1 and S' = t the critical behaviour due to the impurity is marginal, i.e. x and C/ 
Tdiverge logarithmically as H and T tend to zero. 

Next we prove the relation (2.8). Consider the identity 

s w  - P) I f s (A )  @fs(P)I = [fs(P) @ fS(A)l sR(A - P I  (2.10) 

which is schematically shown in figure 3. It is clear from this figure that the identity 
follows straightforwardly from the triangular relation (2.1). Multiplyingequation (2.10) 
by [,R(A - p)]-' from the left we obtain 

f S V ) @ f d P )  = [ S W A  - P)l-'[fs(P)@fs(A)l s w  - P). (2.11) 

Taking the trace over both auxiliary spaces the left-hand side just yields Ts(A)Ts(p). The 
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right-hand side is the trace over a product of operators, which is invariant under a cyclic 
permutation of these operators. Hence, the right-hand side yields Ts(p)Ts(A), proving 
in this way equation (2.8). An analyticcontinuation argument can be invokedfor those 
points where [sR(A - p)]-' does not exist. 

Rather than diagonalizing Ts(A) (which is a (2s + 1) X (2s + 1) matrix) for all A 
simultaneously, we choose the simple way outlined in 1141 and [18]. We introduce a 
second monodromy matrix, defined over a two-dimensional auxiliary space a, 

j o ( A ) =  ,sRo'(A) osRo*(A). . . ,,sRo"(A) ~~s.Roi"p(A),sRom""(A). . . o~RoN(A)  (2.12) 

so tht jAA) is now a two-dimensional matrix in Vo. Again an impurity of spin S' is 
introduced between the sites m and m + 1. This is a necessary condition to construct the 
following identity, 

&(A.- P ) I ~ & ) @ ~ S ( P ) I =  [&)@-fAA)I &(A - P )  (2.13) 

which follows straightforwardly from the triangular relation (2.1). Proceeding in a 
similar way as in equation (2.11) we obtain, taking the trace over both auxiliary spaces, 

[To(A), Ts(r)l = 0 (2.14) 

where To@) = Tr,,(j,,(A)), Hence, there exists a basis that diagonalizes simultaneously 
T&) and TS&) for all A and p, Similarly, using the identity 

- p)[-f0(A) @j&)I  = [ j&) @ j O ( A ) l  A h  - P) (2.15) 

one can show that 

[T.J(A). T,(!J)I = 0. (2.16) 

Hence, the basis that diagonalizes To@) for all A also diagonalizes Ts(p) for all p. 
j0@) is a 2  x 2 matrix in auxiliary space, which can be written as 

(2.17) 

where A,  E ,  C and D are operators built from products of vertex weights. The diag- 
onalization of T,(A) then corresponds to diagonalizingA(A) + D(A). Inserting (2.2) into 
(2.15) and carrying out the matrix products one arrives at the following commutation 
relations for the operators A,  E ,  C and D: 

[A(A),A(P)I = [W), D(P)l= 0 (2.18a) 

[E(h), B(P)I = [c(A), CWI = 0 (2.18b) 

W)A(p)  = [1/(1 -A + P)IB(P)A(A) - [(A - ~0/(1 - A  + P)IA(P)B(A) 

E(p)D(A) = [Nl- A + p ) l W P ( p )  - [(A - ~ ) / ( 1  - A  + P ) I W ) W ) .  

(2.18c) 

(2.184 

We denote with Qo the state of maximum spin, i.e. the state in which all spins S in 
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.f&) have S, projection S and the impurity has S, projection S'. Now ,sRun(A) applied 
on Qu yields (here n is the site index) 

l(l-2A)+S S, ) Qo. 1(1 -U) - s vsRu"(4Qo = (o (2.19) 

If n is the impurity site, then S is to be replaced by S'. It follows immediately that the 
eigenvalues of A(A)Q0 = AA(A)Qo and D(A)Qu = AD(A)Qu are given by 

AA(A) = [$(I -2A) + SJN[l(l -U) + S'] 

AD(A) = [t(l - 2A) - SIN[t(l - 2A) - S'] 
(2.20) 

and that C(A)Q, = 0. 
Next we define a state with M flipped spins as 

M 

Q ( A i ,  . . . ,Ah) = n B(A;)Q, 
I =  I 

(2.21) 

In view of equation (2.19) we can interpret B as a spin lowering operator. Hence, 
the sequential application of M operators B yields a state with total spin projection 
(IVS + S' - M ) .  Here { A ; }  is a set of M parameters to be determined by the condition 
that Q ( A ; ,  . . . ,Ah) is an eigenstate ofA(A) + D(A) .  After some algebra we obtain 

[AQ)  + D(A)lQ(Ai, .  . . ,Ab) = [A(A) + W A ) ]  n B(A;)Qu U 

/ = I  

M M M 

=A(L(A;H TI B @ ; ) Q o  + 2 An(A,{A;}) II B(V)B(h)Qu (2.22) 
I =  1 " = I  I =  I 

I # *  

where 

and 

Here wehavecommuted(A + D) throughall theBoperatorsbymakinguseofequations 
(2.18). If the second term on the right-hand side of (2.22) vanishes, then 
Q ( A ; ,  . . . ,Ah) is an eigenvector of (A + D) with eigenvalue given by equation (2.23). 
This is the case if & ( A ,  (AI}) = 0 for n = 1,. . . , M ,  so that all the 'unwanted' terms 
disappear. These M constraints determine the auxiliary parameters A:. Setting 
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I ;  = iAn + 4 we finally obtain the Bethe ansatz equations for the Heisenberg chain with 
impurity (S' = a): 

M 
( A . + i S j N A n + i S '  = -n  A, - A, + i 

A. - A, - i A, - iS An - is' 
where n = 1 , .  . . , M. The second factor on the leh-hand side of equation (2.25) is due 
to the impurity. 

The Bethe unsutz equations (2.25) diagonalize To@) for all h and, as argued above, 
simultaneously Ts(h) for all 1. The eigenvalue of T&) is given by equation (2.23). The 
energy of our system is, however, determined from the eigenvalue of Ts(h) through 
equation (2.9). To calculate this eigenvalue we would have to consider &(A), which is a 
(2s + 1) X (2s + 1) dimensional matrix in auxiliary space, and derive the commutation 
relations corresponding to equations (2.18) for the non-trivial components of &A). 
Following a procedure analogous to equation (2.22) we then obtain the desired eigen- 
value. The 'unwanted' terms vanish identically if the set { A ; }  satisfies the Bethe unsatz 
equations (2.25). 

We are mainly interested in the impurity contribution to the energy. There is an 
alternative way to obtain this contribution, namely via the self-consistent solutions of 
equations (2.25) used in the energy expression for the chain without impurity. This 
procedure has been frequently employed to calculate the energy associated with a 
magnetic impurity in a metal (Kondo problem). The impurity factor in equations (2.25) 
then generates the desired energy change (which is a 1,"effect). The expression of the 
energy of the chain without impurity has been obtained previously by Babujian [ 181 and 
is given by 

M 

E = - C [S/(A? + S')]. (2.26) 

Finally, we would like to sketch the method to derive the Hamiltonian describing 
the interaction of the chain with the impurity. This Hamiltonian has been constructed 
in [24] for S = 4 and arbitrary S' and in [25] for S = 1 and arbitrary impurity spin S'. 
Since the impurity only interacts with the spins at the sites labelled m and m + 1,  it is 
actually only necessary to consider 

T*(h) = T ~ ~ ( s R ~ " ( h ) ~ ~ ~ R ~ ~ ~ p ( h )  sRo"+l(h)). (2.27) 

The matrix product and the trace are evaluated in the auxiliary space V, of spin S. Now 
Hint is obtained via 

(2.28) 

I = 1  

Him = H* - 2Hm,m+t 

where 

d 
dh H *  =--In T*(A)lA=, 

andHm,,+l is theinteraction between the sitesm andm t 1. Thissubtractionisnecessary 
since the trace in (2.27) links these two sites. Since H* and T*(h) commute, they can be 
diagonalized within the same basis of eigenstates. Since H* is invariant under the 
permutationofthesitesm andm + 1, theeigenfunctions shouldhave welldefinedparity. 
The totalangularmomentum./ = S, + S,+, + S'anditszcomponentaregoodquantum 
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numbers of T*(A). Owing to the well defined parity it is convenient first to sum S, and 
S,+, to give S*, the quantum numbers for S* being 0, 1,2,. . . ,2S. The Hamiltonian 
Hi,, is most conveniently expressed as a linear combination of products of irreducible 
tensor operators for the spins S,, S,+, and S'. As a consequence of the rotational 
invariance and for S' = 4, H,,, should be of the form 

Hmt = P(Sm . S ~ + I ) +  I(S'. Sm)+ (S' * Sm+,)lQ(Sm * S m + l )  (2.29) 

Equations (2.25) are also the Bethe ansatz equations for an impurity of arbitrary 
where P and Q are polynomials of order 2s and 2s - 1, respectively. 

spin S', which are solved in the following section. 

3. Thermodynamic equations 

The thermodynamic properties of the model are obtained in complete analogy to 1618, 
251. Each state of the system corresponds to a solution of the Bethe equations 
(2.25). In the thermodynamic limit the solutions of equations (2.25) lie in the complex 
plane and form strings of length n 

A;,- = A; + i(n + 1 - 2 4 / 2  LY = 1,2, .  . . , n (3.1) 

where A; is the centre of the string and a real number. The length of the string is in 
principle arbitrary, n = 1.2,. . . . Let En be the number of strings of length n; then we 
must satisfy 

M = nE,, 
"= 1 

(3.2) 

A string excitation of order n represents a bound-magnon state of n magnons. 
Substituting (3.1) into (2.25) we obtain the following relations by taking logarithms: 

x n ,  
N@,,,s(AY) +On,, , (A;)=2d~ + E,,.k(AY -A!) (3.3) 

k = l  i = l  

where 
d"(".ZS) 

@",*$(A) = 2 arctan[ZA/(n + 2S + 1 - 201 
I = 1  

and 

Zn,k(A) = 2 arctan[2A/(n + k ) ]  + 4 
min(k.n)-l 

arctan[2A/(n + k - 201 
I = 1  

(3.4) 

+ skZn2 arctan[ZA/l(n - k) l ] .  (3.5) 

I n  the thermodynamic limit the variable W ; / N  becomes closely spaced and can be 
regarded as continuous. It is then convenient to introduce density functions for each set 
ofrapidities, one forthe 'particles'and one for the 'holes'. We denote them by p,(A) and 
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P , ~ ( A ) ,  respectively, where the sub-index n refers to the string length. Differentiating 
equations (3.3) with respect to A; we obtain in the thermodynamic limit 

1 min(n.2S) I(n +2s+ 1-20 1 I (n + 2s' + 1 - 20 
- = I = 1  ' A z + + ( n + 2 S + 1 - 2 1 ) 2 + ~  2 AZ+f(n+2S'+1-21)2 

(3.6) 

for n = 1,2,  . . . and where 

The last term in (3.7) is to be interpreted as a &function if k = n. 
The magnetization, S, = NS + S' - M ,  and the energy, equation (2.26), are given 

by 
3 

S , / N  = S + S ' / N  - n I dAp,,(A) 
n =  I 

x l ( n  + 2s + 1 - 20 mi"(2S.n) 

E / N =  - I dApn(A) 2 A' + f ( n  + 2s + 1 - 202'  (3.9) 
" = I  

The entropy is given by the distribution of particles and holes, which are exclusive and 
hence governed by Fermi statistics. We introduce an entropy functional for each class 
of excitations, so that 

S I N =  
x 

dA [ (P ,  + Pn.h) In(Pn,h) - P. In P n  - Pn.h I n P d  (3.10) 

To obtain the free energy we have to impose thermal equilibrium and minimize the 
functional F =  E - TSwithrespect tothedensityfunctions,p,andp,,hforalln, subject 
to the constraints (3.6) and (3.8). The constraint (3.8) is introduced via a Lagrange 
multiplier, which is physically interpreted as the magnetic field. The variations 6p,,?(A) 
can be eliminated using (3.6). Introducing anenergy potential for each classof excitations 

&"(A) = Tln(Pn.h/p,t) (3.11) 

" = I  

we obtain after some algebra 

dA'A,,,&l -A')  In[l + exp(-~~(A') /T)] ,  
k = l  

(3.12) 

Equations (3.12) are the thermodynamic Bethe unsatz equations. This infinite set of 
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non-linear integral equations can be expressed in various equivalent ways. In Fourier 
space these equations become algebraic. The Fourier transform of A&i) is 

An.,(@) = coth(l@l/2)Iexp[-l@l I(k - n)l/zI -exp[-lwI(n+k)PI} (3.13) 

and its inverse is 

A,:(@) = 6 n . k  -(s,.k+t +s,k-t)/[2cosh(@/2)1. (3.14) 

Multiplying the Fourier transform of equation (3.12) by A.,,(oJ), summing over n and 
Fourier transforming back to A space one obtains 

€,(A) = T d h '  {Zco~h[n(A-A')])-~ In{[l +exp(~ ,+~ /T) ]  

x [l + exp(~,-,/T)]} - 2rc~,,,/[2cosh(nA)]. (3.15) 

I 
Equations (3.15) are only complete with the asymptotic field boundary condition 

lim [e,(A)/m] = H (3.16) 
m-= 

which follows from equations (3.12). 
Inserting the thermal equilibrium density functions into the free energy functional 

we obtain after some algebra the free energy expressions for the host chain and the 
impurity 

F,,,,(H, T )  = Ff,,,  - T 

F,,,(H, T) = Fy,, - T 

where Fp,,, and FP,, are constants given by 

dA [2cosh (~A) ] -~  In[l + e x p ( ~ ~ / T ) ]  

dA [2cosh (~A) ] -~  In[l + e x p ( ~ ~ . / T ) ]  

(3.17) I 
I (3.18) 

FO,,,, = 1[WG) - W O  + 591 
F!mp =.t[V(i + %IS - S'l) - V(a + I ( S  + S'))] 

(3.19) 

(3.20) 

The solution of equations (3.12) and the thermodynamic properties of the system 
with q being the digamma function. 

for small fields and low temperatures are discussed in the following section. 

4. Small-field and low-temperature properties of the system 

In this section we analyse first the zero-temperature properties of the system in a 
magnetic field and then the low-temperature behaviour in zero field. 

4. I. Zero-temperature zero-field solution 

Consider equations (3.15) for T-0. Since for m f 2s the right-hand side is always 
positive,it follows that ~,(A)ispositiveform # 2SandallA. Hence, accordingto(3.11) 
the particle states for m # 2S are not occupied. This conclusion is valid for all fields in 
the T+ 0 limit, The ground-state properties are then determined by strings of length 
2 S ,  i.e. 2S spin waves are glued together (form a bound state) and behave as a unit. 
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Consider now equation (3.6) for n = 2 s  and pk = 0 for k # 2s. In  Fourier space we 
obtain 

1 sinh[min(S, S')w] 
N sinh(4w) 

+ - exp[ - max(S, S') lwl] 

The zero-field limit is characterized by the absence of string holes of length Z, i.e. 
pX.h = 0. It follows that 

1 sinh[min(S, S')w] 
bZs(w) = [2cosh(w/2)]-' (l+~exp([S-max(S,S')]lwl} sinh(Sw) 

and using equation (3.9) we arrive at 

E = - 4 dw pzS(w)  e-'lm1 [sinh(Sw)/sinh($w)]. (4.3) I 
Inserting (4.2) into (4.3) we obtain the zero-field ground-state energy, E = Fe,,, + 
N-'Fym,, where Ffl,, and FFmp are defined by equations (3.19) and (3.20). 

4.2. Zero-temperature solution in afinitefield 

We now consider equations (3.12) in the limit T+ 0. Defining as E: the positive part of 
E, and as E; its negative part, we have after Fourier transformation 

t ; ( w )  = 2nnH6(w) - x ~ Z S . n ( ~ ) [ 2 ~ ~ ~ h ( w / 2 ) ] ~ 1  - A\~. . (w)k;s(w) (4.4) 
since 
(4.4) for n = 2s. Since E& = 0 if H = 0, it follows that 

is the only potential with a negative part. Consider first the zero-field limit of 

E&) = -ln/cosh(nA) (4.5) 
and for n # 2s we have E,, = 0. 

From (3.18) the T-, 0 impurity free energy limit is 

FS Imp ( T =  0, H) = FY,, - I 2x [2cosh(w/2)]-'i.&*(wj (4.6) 

which in the limit H = 0 agrees with the result (4.3). since S&,(w) = 0. Using equation 
(4.4) for n = 2s' and n = 2s we express the impurity ground-state energy in an arbitrary 
field as 

FS (T=O,H) = F~~p-[S'-min(S,S')]H-f2[2cosh(w/2)]- '  dw 
n Imp 

x{exP[-I~II(S-S')II 

- exp[-Iol(S + S')I}/[l - - ~ l 4 ) l G d w )  (4.7) 

where (3.13) has been used. The supra-index S' in F&, is to indicate that it refers to an 
impurity spin S'. In other words, by solving the integral equation (4.4) for n = 2S, we 
are able to obtain the free energy for arbitrary impurity spin via (4.7). 
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The function €=(A) is symmetric in A, negative for small A, grows monotonically 
with A > 0 and is positive (if H # 0) as A +  m. Hence, has zeros at &(iB) = 0, 
where B is a function of H ,  tending t o m  as H+ 0. 

Following the procedure described in [IS] we solve equation (4.4) for n = 25 iter- 
atively for small fields as a sequence of Wiener-Hopf integral equations. Dividing 
equation (4.4) by .&2s(w) we have 

€=(A) = tH - &rc/cosh(zA) + (I:=' + 1:) dA'J(A-A')EX(A') (4.8) 

where 

We now define y(A) = E& + E ) ,  so that y(A = 0) corresponds to the 'Fermi surface' 
of strings of length 2 s  (no other states have a Fermi surface). In  terms of y(A) equation 
(4.8) reads 

y(A) = 1H - bn/cosh[n(A + E ) ]  + 1% dA' J(A - A')y(A') 

+ Ioz dA' J(A + A' + 2B)y(A') 

0 

(4.10) 

where we have used that &=(A) = €=(-A). I f H e  l , B  is very large and 
J(A + A' + 2B)  - 1/B,so thatthelast termisorder l/Bsmallerthan thepreviousones. 
Writing y(A) = yl(A) + yz(A) + . . . , we solve equation (4.10) iteratively with yl(A) 
andy:(A) satisfying 

yl(A) = bH - $n/cosh[n(A + B)] +I= dA'J(A - A')yl(A') (4.11) 

yz(A) =lox dA'J(A - A')y2(A') + dA'J(A + A' + 2B)y,(A') (4.12) 

etc. These equations are of the Wiener-Hopf type and can be solved analytically. 
Denoting with yt and y -  the positive (A > 0) and negative (A < 0) parts of y we 

obtain on Fourier transforming equation (4.11) 
j~(u~)/A,,~,(w) +jr(o) = zHG(w) - Ine-"'/cosh(w/2). (4.13) 
In order to apply the Wiener-Hopf method [A2S,ZS(w)]" has to be written as a product 
of two functions, one G&(w), analytic in the upper half-plane, the other. G,(w), 
analvtic in the lower half-olane, 

0 

Io= 

Jwn r ( i - iwpn) r ( i - i sw/n )  . (4.14) 
1 

G&(w) = G,(-w) = r (1-  iw/Zn) 
The constant a = ze/S is determined so that C&(m) is constant. From the analytic 
properties of the functions jf ( w )  and G,'(w) it follows that 

P:(w) = - 4 + ( w ) / G w J )  BT(w) = +q-(w)G%(w) (4.15) 
where 

We are actually interested in 9:  ( w )  for large E ,  so that the contour integral (4.16) can 
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be closed through the lower half-plane. The value of the integral is given by the sum of 
the residua of r(& - iw'/2n). Keeping only the leading term (the pole closest to the real 
axis) we obtain 

(4.17) 

Note that next-order corrections are of the order e-kB smaller. 
Corrections due toy, are only of the order 1/B smaller and should not be neglected 

in general. The Fourier transform of equation (4.12) can be written as 
j : (w)G:s(w)+j ; (w) /Gw(w)  = [l/G,(w)-G&(w)] e-"oBj:(-w) (4.18) 
where pT(-w) is analytic in the lower half-plane. Again, from the analytic properties 
of y' and G' it follows that 

j : (w)G&(o) = (-i/Zn) dw'e-2'"'B[p:(-w')/(w' - w - io)] 

(4.19) 

Since B is large and positive, we close the contour through the lower half-plane; here 
only C'(w') has singularities, the leading one being the cut along the imaginary axis. 
For our next step, which is the determination of B(H) .  we only need y: (w --f m), which 
is of the order H/B.  

The parameter B is a function of H and is determined from the condition that y(A = 
0) = 0 or &B) = 0. In Fourier space this condition is equivalent to 
Em,, w j ' ( w )  = 0 and using (4.17) and (4.19) we obtain 

I 
X [l/GF'(w') - G&(w')]. 

H 1 + 1 - + f - In - + .  . . = [n2/r( l  + S)](S/e)se-xB. I (n i l  (nSg)2 ("3 1 (4.20) 

We are now prepared to calculate the T = 0 impurity free energy for the three 
situations (i) S' = S, (ii) S' > Sand (iii) S' < Sin the limit of small fields. Note that since 
€&(A + B )  = y+(A), we have &(o) = eio6j'(w). We use this relation in equation 
(4.7). 

4.2.1,s' = S. In this case the impurity is just one more site in the chain and F,mp = F,,,/ 
N .  Equation (4.7) reduces to 

dw eiwBP'(w) 
2n 2 cosh(w/2) Ffmp(T= 0, If) = $[VJ(&) - VJ(& + S)] - 1- (4.21) 

where the contour is to be closed through the upper half-plane and the value of the 
integral is given by the residua of the poles of [cosh(w/Z)]-l. The leading order con- 
tribution arises from the pole closest to the real axis, w = in, and is -e-"Bj'(in). This 
term is of the order of HZ; in general the pole at w = i(2n + l)n, n 0, yields a term of 
the order gntZ. j:(in) is given by (4.17) andj$(in) can be obtained from (4.19) 
j:(i) = [S2H/2nr(l + S)](.S/e)S[l/B + (S/nB2) ln(S/2neB)] (4.22) 
so that 
F&(T = 0, H )  = 4[v(f) - v(f+ S)] - (SH2/2nz)[1 + S/lln HI 

- Sz(lnlh Hl)/(h H)z + . . . 1. (4.23) 
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Equation (4.23) is in agreement with Babujian’s results and shows the existence of 
logarithmic singularities in the small-field susceptibility. 

4.2.2. S’ > S. In this case the impurity spin is expected to be partially compensated by 
the antiferromagnetic chain. The impurity free energy reduces to 

F&(T= 0, H )  = t [ y t ( l +  I(S - S)) - yt(i + t(S’ t S))] - (S‘ -S)H 

dwexp[iwB - (S’ - S ) l w l v + ( w )  
2 cosh(w/2) 

(4.24) 

where the contour of the integral is to be closed through the upper half-plane. The value 
of the integral is given by the residua of the poles of [cosh(w/2)IF1 and the cut of 
exp[ -(S‘ - S)lwl] along the imaginary axis. The leading contribution originates from 
the cut, which is more conveniently analysed by writing 

(4.25) 

The cut gives rise to free energy terms proportional to the field, while the poles, as in 
(4.23). give rise to contributions of the order of prZ, n = 0,1,2, .  . . , After some 
calculations we obtain 

exp[-(S’ - S)lwl]  = [(-iw + o)/(+iw + O ) ] ~ ’ w ( s ’ ~ s ) ’ ~ .  

F;L,(T= 0, H) = i[Y(t + I(S’ - S)) - V ( t  + l(S’ + S))] 
-(S’-S)H[l+S/lln~-S*(lnllnHl)/(lnH)’+. . .]. (4.26) 

This result shows that at T = 0 the impurity has an effective spin (S‘ - S) that is weakly 
coupled to the spins in the chain. This weak coupling manifests itself in the logarithmic 
correctionsinequation(4.26). Notethat weonIyused9r(w)in(424),since9:(w)gives 
rise to contributionsof the order of H/(ln H)’ and higher. 

4.2.3. S‘ < S. In this case the impurity spin is smaller than the lattice spins and their 
collective behaviour leads to critical properties. From equation (4.7) the impurity free 
energy is given by 

Fsmp(T = 0, H )  = &[Y(t + 4(S - S’)) - V(1 + i(S + S7)l 

dw eimsj + ( w )  sinh(S’w) -i- 2.c 2 cosh(w/Z)sinh(Sw) (4.27) 

where, again, the contour integral is to be closed through the upper half-plane. There 
are poles arising from the zeros of cosh(w/2) and sinh(Sw). The leading contribution is 
due to the pole at ix/S, which yields when inserted into eiNB. Since for small fields 
9 ;  is proportional to H we obtain 

FLp(T=O,H) = 1[1$(1+ 4(S - S’)) - V(4 + t (S  + S’))] - AH1t1is  (4.28) 

where the constant A is given by 

Contributions arising from 9: are of the order H’+*is/ln H ,  i.e. they yield logarithmic 
corrections to the critical behaviour. The exponent of the next-to-leading term in (4.28) 
is (1 + 2/S). 



Impuriry-induced behaviour in Heisenberg chains 6631 

The above arguments are not valid if S = 1 (and S’ = f) ,  where the field-dependent 
term in (4.28) would be just Hz and hence regular. This is not the case, since in (4.27) 
thesingle poleat iz/SforS> 1 isasecond-orderpo1eif.S = l,sincebothcosh(o/Z)and 
sinh(o) have zeros. The leading field-dependent term is then -(Z/n3)@11n HI. 

As a consequence of the field-dependent term in (4.28) the susceptibility diverges as 
H-’+’is as H +  0. Hence, the collective behaviour of the impurity intetacting with the 
magnetic chain leads to critical properties. For S = 1 (and hence S’ = 4) the exponent 
vanishes, and a logarithmic divergence emerges. 

4.3. Zero-fieldsolution at low temperatures 

We now consider equation (3.15) for low temperatures, i.e. T-=3 1. Following a similar 
procedure as for the n-channel Kondo problem 1301 we introduce a shift in the rapidity 
parameter, A = A  - (I/n) In(T/h), and define 

(4.29) 
In terms of the qm, equations (3.15) take the form 

vm(A) = ( 1 / T k m [ h  - (1/4 WT/2n)l= ( l / W m ( A ) .  

p,(A) = IdA’{2cosh[n(A-A’)]}-’ In{[l +exp(rpm+,(A’))] 

x [I+ exp(v,-,(h’))l} - am.,, e x ~ ( - ~ h )  (4.30) 

so that the temperature has formally disappeared as a parameter. The asymptotic field 
boundary condition for rpm is 

lim ?,(A) = nH/T 
m+= 

(4.31) 

which follows from equation (3.16). In the limits rp 4 2 =equations (4.30) reduce to 
algebraic ones and can straightforwardly be solved [31] 
1 +exp[q,(A+=)] ={sinh[(m + l)H/2T]/sinh(H/ZT))* V m  (4.32) 

l+exp[rp,(A+-m)]= 

We now use this solution in the free energy, which according to equation (3.18) can be 
written as 

{sin[(m+l)n/(2S+2)]/~in[n/(2S+2)]}~ m s 2 S  

{sinh[(m+l-zS)H/2T]/sinh(H/2T)}* m22.S. 
(4.33) [ 

F,,,(H,T)= e,, - T/dAln{l +exp[q2,,(A)]}/{2cosh[d -In(T/Zn)]}. (4.34) 

the l/cosh function only contributes significantly around A - In(T/Zn) 9 0 .  Inserting 
equation (4.33) as the solution for T-t  0 we obtain F,,,(H, T) = F,,,(H, T = 0) - 
TS(H, T = 0) 
(i)S’=S S(H, T=0)=0 

(ii)S’>S S(H=O, T=O)=ln[2(S’-S)+l] 

S(H#O, T=O) = O  (4.35) 

S(H#O, T=0)=0. 
(iii) S’<S S(H=O, T=O) =In{sin[z(ZS’+ 1)/(2S+2)]/sin[n/(2S+2)]} 

The entropy for S’ < Sin the presence of a field does not follow straightforwardly from 
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(4.33), but requires further elaboration along the tines of [30, 331. In summary, we 
obtained that the zero-field ground state is a singlet only if S' = S. Any degeneracy is 
removed even by a small field, so that the entropy is essentially singular at H = T =  0 if 
S' # S. This is in agreement with results obtained in section 4.2. 

Hence, if S' = S the low-temperature and small-field dependence is Fermi-tiquid- 
like; if S' > S the remaining spin degeneracy of (S' - S) gives rise to a Schottky anomaly 
for H - T; and finally if S' < S the effective zero-field degeneracy at T = 0 is not an 
integer, so that non-trivial thermal fluctuations are to be expected. Indeed, critical 
behaviour is obtained as shown below. 

The next step consists in obtaining the next leading order of the temperature depen- 
dence for the situation S' < Sin zero field. Following [30] we define 

(4.36) 

Assuming that Sg, is small we can linearize equations (4.30) in &gm and obtain 

Ggm(A)(&/fm+~fm-I) = I &'I2 cosh[n(A - A')l}-'[Sg,t~ (A') + &,,,-I (A')] (4.37) 

where f i  = gm(L = - m), fo = 1. We now express Sg,(L) for m < 2s in terms of 
Sg&) = g&). After some algebra [30,31,33] one arrives at (in Fourier space) 

Sk,(w) = i , . zs(w)kdw) (4.38) 

where i,,sisdefined as 

f(j- I) sinh[(j+Z)(w/2)] - f ( j+2)  sinh(jw/2) 
2f(j') cos[n/(S+2)] sinh[(s+ l)w] 

(4.39) b.&J) = 

The zero-field free energy is now obtained from (4.34) 

F,,,(H = 0, T )  = F:,, - Tln{sin[z(D' + 1)/(2S + 2)]/sin[?r/(2s + 2)]) 

- T - e - i W h ( r / h ) / Z  I2 cosh(w/2)1-' i z S . . d o ) g z r ( w )  S' < s. 
(4.40) 

The contour of the integral has to be closed through the upper half-plane. The leading 
contribution arises from the pole at w = 4zi/(2S + 2) (the residuum of the pole at w = 
2zi/(2S + 2) vanishes identically) and is proportional to 

Tlt4/(2StZ),  (4.41) 

I ;: 

Hence, the specific heat at very low Tis proportional to 
c - T4/CU+2), (4.42) 

This result does not hold for S = 1 (and S' = 1), where the pole at w = in turns out to be 
a second-order one and 

C -  Tln(?r/T) s = 1, s' = 1. (4.43) 

In order to obtain the zero-field susceptibility at low Tfor S' < S, we follow a similar 
procedure [31], now collecting the terms proportional to H 2  (assuming H 4 T). A set 
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of integral equations similar to  (4.37) is obtained if one linearizes in the field dependence 
(H2 terms). After a similar algebra as in the zero-field case 

s> 1 (4.44) 

x - W / T )  s = 1, S' = 4. (4.45) 

T- 1+4/(2S+Z) X- 

5. Conclusions 

Using SU(2)-invariant vertex weights we constructed an integrable variant of the Hei- 
senberg chain ofspinScontainingone impurityofspinS' = $on themthlinkinteracting 
with spins at the neighbouring sites. The condition of integrability yields the discrete 
Bethe ansatz equations for the system, from which the thermodynamic properties for 
arbitrary S and S' have been derived. This extends previous results [24,251 for S = 4 and 
S = 1 with arbitrary impurity spins S'. 

The properties of the system are closely related to those of the generalized n-channel 
Kondo problem with an impurity spin S'. The thermodynamic Bethe ansatz equations 
are indeed identical at low Tfor small fields ifn equals the spin of the chain, i.e. n = 2s. 
Three situations have to be distinguished. (i) If S' = S the impurity is just one more site 
in the chain and its properties are identical to those of the 'bulk'. (ii) If S' > S the spins 
neighbouring the impurity are not able to compensate the impurity spin S' into a singlet 
at low T and an effective spin (S' - S) remains. A small magnetic field orients this 
effective spin, which is weakly coupled to the antiferromagnetic chain (Kondo-like 
logarithmiccorrections). The susceptibility diverges as T- Ofor H = Oand the specific 
heat shows a Schottky anomaly as a function of HIT.  (iii) If S' < S again a complete 
compensation of the impurity spin by the neighbouring lattice sites cannot take place. 
The impurity is said to be overcompensated. The fmed point in this case has different 
properties and leads to critical behaviour. The susceptibility diverges as H and T tend 
to zero, 

x (T= 0. H) m H-l+l / s  x ( ~ ,  = 0) a ~ - 1 + 4 / ~ + 2 )  (5.1) 

and the specific heat over temperature is 

C(T, H = O)/TCr 7--'+4iv+a 

Since the field and the temperature have different scaling dimensions, i.e. 1/S and 4/ 
(2s + 2), respectively, the limits T +  0 and H - t  0 cannot be interchanged. For the 
particular case S = 1 and S' = 4 the critical exponents vanish and give rise to logarithmic 
divergences. 
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